3.535 \(\int \cos (c+d x) \sqrt{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=330 \[ \frac{\sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{d}+\frac{\sin (c+d x) \sqrt{a+b \sec (c+d x)}}{d}+\frac{(a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{b d}-\frac{b \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a d} \]

[Out]

((a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqr
t[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) + (Sqrt[a + b]*Cot[c + d*x]*E
llipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*S
qrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d - (b*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a +
b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x
]))/(a - b))])/(a*d) + (Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.323031, antiderivative size = 330, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {3857, 4059, 3921, 3784, 3832, 4004} \[ \frac{\sin (c+d x) \sqrt{a+b \sec (c+d x)}}{d}+\frac{\sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{d}+\frac{(a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{b d}-\frac{b \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

((a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqr
t[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) + (Sqrt[a + b]*Cot[c + d*x]*E
llipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*S
qrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d - (b*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a +
b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x
]))/(a - b))])/(a*d) + (Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/d

Rule 3857

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(Cot[e
+ f*x]*Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1/(2*d*n), Int[((d*Csc[e + f*x])^(n + 1)*
Simp[b - 2*a*(n + 1)*Csc[e + f*x] - b*(2*n + 3)*Csc[e + f*x]^2, x])/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegerQ[2*n]

Rule 4059

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Int[(A
- C*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[
e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int \cos (c+d x) \sqrt{a+b \sec (c+d x)} \, dx &=\frac{\sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac{1}{2} \int \frac{b-b \sec ^2(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{\sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac{1}{2} \int \frac{b+b \sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx-\frac{1}{2} b \int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{(a-b) \sqrt{a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{b d}+\frac{\sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac{1}{2} b \int \frac{1}{\sqrt{a+b \sec (c+d x)}} \, dx+\frac{1}{2} b \int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{(a-b) \sqrt{a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{b d}+\frac{\sqrt{a+b} \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{d}-\frac{b \sqrt{a+b} \cot (c+d x) \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{a d}+\frac{\sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}\\ \end{align*}

Mathematica [C]  time = 18.8184, size = 2713, normalized size = 8.22 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(Cos[c + d*x]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*(I*(a - b)*EllipticE[I*ArcSinh[Sq
rt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b
)] + (2*I)*b*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b
)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - Sqrt[2]*Sqrt[(-a + b)/(a + b)]*Sqrt[Cos[c + d*x]/
(1 + Cos[c + d*x])]*(b + a*Cos[c + d*x])*Tan[(c + d*x)/2])*(-1 + Tan[(c + d*x)/2]^2))/(Sqrt[(-a + b)/(a + b)]*
d*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^4]*((Sec[(c + d*x)/2]^2*Sqrt[Cos[(c + d*x)/2]^2*
Sec[c + d*x]]*Tan[(c + d*x)/2]*(I*(a - b)*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b
)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + (2*I)*b*EllipticPi[-((a + b)/(a - b)), I*
ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]
^2)/(a + b)] - Sqrt[2]*Sqrt[(-a + b)/(a + b)]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*(b + a*Cos[c + d*x])*Tan[(
c + d*x)/2]))/(Sqrt[(-a + b)/(a + b)]*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^4]) + (a*Sqr
t[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sin[c + d*x]*(I*(a - b)*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c +
 d*x)/2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + (2*I)*b*EllipticPi[-((a
+ b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])
*Sec[(c + d*x)/2]^2)/(a + b)] - Sqrt[2]*Sqrt[(-a + b)/(a + b)]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*(b + a*Co
s[c + d*x])*Tan[(c + d*x)/2])*(-1 + Tan[(c + d*x)/2]^2))/(2*Sqrt[(-a + b)/(a + b)]*(b + a*Cos[c + d*x])^(3/2)*
Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^4]) - (Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(I*(a - b)*EllipticE[I*ArcSinh
[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a
+ b)] + (2*I)*b*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a
- b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - Sqrt[2]*Sqrt[(-a + b)/(a + b)]*Sqrt[Cos[c + d*
x]/(1 + Cos[c + d*x])]*(b + a*Cos[c + d*x])*Tan[(c + d*x)/2])*(-(Sec[(c + d*x)/2]^4*Sin[c + d*x]) + 2*Cos[c +
d*x]*Sec[(c + d*x)/2]^4*Tan[(c + d*x)/2])*(-1 + Tan[(c + d*x)/2]^2))/(2*Sqrt[(-a + b)/(a + b)]*Sqrt[b + a*Cos[
c + d*x]]*(Cos[c + d*x]*Sec[(c + d*x)/2]^4)^(3/2)) + (Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-1 + Tan[(c + d*x
)/2]^2)*(-((Sqrt[(-a + b)/(a + b)]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]
^2)/Sqrt[2]) + Sqrt[2]*a*Sqrt[(-a + b)/(a + b)]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sin[c + d*x]*Tan[(c + d*
x)/2] - (Sqrt[(-a + b)/(a + b)]*(b + a*Cos[c + d*x])*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c
 + d*x]/(1 + Cos[c + d*x]))*Tan[(c + d*x)/2])/(Sqrt[2]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]) + ((I/2)*(a - b)
*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*(-((a*Sec[(c + d*x)/2]^2*Sin[c
 + d*x])/(a + b)) + ((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/(a + b)))/Sqrt[((b + a*Cos[c +
d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + (I*b*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[
(c + d*x)/2]], (a + b)/(a - b)]*(-((a*Sec[(c + d*x)/2]^2*Sin[c + d*x])/(a + b)) + ((b + a*Cos[c + d*x])*Sec[(c
 + d*x)/2]^2*Tan[(c + d*x)/2])/(a + b)))/Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - (b*Sqrt[(-a
 + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)])/((1 - ((-a + b)*Tan
[(c + d*x)/2]^2)/(a - b))*Sqrt[1 + ((-a + b)*Tan[(c + d*x)/2]^2)/(a - b)]*Sqrt[1 + ((-a + b)*Tan[(c + d*x)/2]^
2)/(a + b)]) - ((a - b)*Sqrt[(-a + b)/(a + b)]*Sec[(c + d*x)/2]^2*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^
2)/(a + b)]*Sqrt[1 + ((-a + b)*Tan[(c + d*x)/2]^2)/(a - b)])/(2*Sqrt[1 + ((-a + b)*Tan[(c + d*x)/2]^2)/(a + b)
])))/(Sqrt[(-a + b)/(a + b)]*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^4]) + ((I*(a - b)*Ell
ipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c
+ d*x)/2]^2)/(a + b)] + (2*I)*b*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/
2]], (a + b)/(a - b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - Sqrt[2]*Sqrt[(-a + b)/(a + b)]
*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*(b + a*Cos[c + d*x])*Tan[(c + d*x)/2])*(-1 + Tan[(c + d*x)/2]^2)*(-(Cos
[(c + d*x)/2]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(2*Sqrt[(-a + b)
/(a + b)]*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^4]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]
)))

________________________________________________________________________________________

Maple [B]  time = 0.287, size = 829, normalized size = 2.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+b*sec(d*x+c))^(1/2),x)

[Out]

1/d*(-1+cos(d*x+c))^2*(2*cos(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos
(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*b-cos(d*x+c)*EllipticE((-1+cos(d*
x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*sin(d*x+c)*a-cos(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*b-2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/
2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2
))*sin(d*x+c)*cos(d*x+c)*b+2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)
*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b*sin(d*x+c)-(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*sin(d*
x+c)-(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c
))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b*sin(d*x+c)-2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*b*sin(d*x+c)-cos(d*x+c)^3*
a+a*cos(d*x+c)^2-b*cos(d*x+c)^2+b*cos(d*x+c))*(cos(d*x+c)+1)^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/(b+a*cos(d*
x+c))/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*cos(d*x + c), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*cos(d*x + c), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \sec{\left (c + d x \right )}} \cos{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(c + d*x))*cos(c + d*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*cos(d*x + c), x)